

The Eighth International Conference on Business Information Security

(BISEC-2016), 15th October 2016, Belgrade, Serbia

ANDROID FORENSIC AND ANTI-FORENSIC TECHNIQUES – A SURVEY

NEMANJA D. MAČEK

School of Electrical and Computer Engineering of Applied Studies, Belgrade and SECIT Security Consulting,

nmacek@viser.edu.rs

PERICA ŠTRBAC

School of Electrical and Computer Engineering of Applied Studies, Belgrade, pericas@viser.edu.rs

DUŠAN ČOKO

School of Electrical and Computer Engineering of Applied Studies, Belgrade, dusanc@viser.edu.rs

IGOR FRANC

Belgrade Metropolitan University, Faculty of Information Technologies and SECIT Security Consulting,

igor.franc@metropolitan.ac.rs

MITKO BOGDANOSKI

Military Academy General Mihailo Apostolski, Skoplje, Macedonia, mitko.bogdanoski@ugd.edu.mk

Abstract: Technology concerning mobile devices has presented revolutionary growth during the last decade. Mobile

phones do not serve only as a means of communication, but also as portable computers with advanced communication

capabilities. Smartphones are able to store a rich set of personal information and at the same time provide powerful

services, such as location-based services, Internet sharing via tethering, and intelligent voice, thus increasing the

likelihood of a such devices being involved in a criminal activities. Mobile forensics is the science of recovering digital

evidence from a mobile device under forensically sound conditions using accepted methods. During the last few years, a

significant amount of research has been conducted, concerning various mobile device platforms forensics, data

acquisition schemes, and information extraction methods. This paper provides a comprehensive overview of the field, by

presenting a detailed assessment of methodologies regarding Android forensic and anti-forensic techniques.

Keywords: Android, Phone, Forensics, Anti-forensics

1. INTRODUCTION

The Android mobile platform has quickly risen from its

first phone in October 2008 to the most popular mobile

operating system in the world by early 2011. According to

Gartner, Inc., global sales of smartphones to end users

totaled 349 million units in the first quarter of 2016, with

Android Android regaining share over iOS and Windows

to achieve 84 percent share [1]. The explosive growth of

the platform has been a significant win for consumers with

respect to competition and features. However, forensic

analysts and security engineers have struggled as there is a

lack of knowledge and supported tools for investigating

these devices [2]. Criminals could use Android phones for

a number of activities ranging from harassment through

text messages and e-mail frauds to trafficking of child

pornography and communications related to narcotics. The

data stored on these phones could be extremely useful to

analysts through the course of an investigation of these

activities. Unless anti-forensics is somehow deployed, a

large volume of probative information linked to an

individual exists on every Android phone, including call

history, contacts, messaging data, e-mails, browser history

and chat logs. According to Lessard and Kessler, these

phones have more probative information that can be linked

to an individual per byte examined than most computers

[3]. However, this data is harder to acquire in a forensically

proper fashion due to a wide range of phones available and

a general lack of hardware and software standardization.

As an example, even different models of the same

manufacturee sometimes require different data cables and

software to access the phone via computer.

Roughly, one may distinguish three types of scenarios

where Andoid forensics may come in handy: an

investigation that will adjudicated in a criminal or civil

court of law, internal corporate investigations (intellectual

property, data theft, inappropriate use of company

resources or employment related investigations) and

investigations that target family matters (divorce, child

custody or estate disputes).

Having that said, one may ask a question: where does the

anti-forensics fit in? Majority of users do not employ

adequate security meassures on their Android phones. So,

let's observe the following scenario: a user that is not

involved in anything related to crime does not employ a

pattern to unlock the screen. The very same user does not

have anti-theft software installed but somehow manages to

loose his phone. A malicious person that has found the lost

Android phone now has a temporary access to Gmail,

Facebook, Twitter and all other accounrs that the user was

logged in to. Authors will allow readers to conclude the

story by themselves (suggestion: avoid happy endings).

According to the aforementioned scenario, the data stored

on a phone presents an obvious threat to the user’s privacy.

Data also provides a well-defined profile of the user that

can further be used to reconstruct his actions at a specific

time [4]. A user who wants to protect his privacy can

employ anti-forensics techniques. According to Ryan

Harris, “anti-forensics is considered to be any attempt to

compromise the availability or usefulness of evidence to

the forensics process. Compromising evidence availability

includes any attempts to prevent evidence from existing,

hiding existing evidence or otherwise manipulating

evidence to ensure that it is no longer within reach of the

investigator. Usefulness maybe compromised by

obliterating the evidence itself or by destroying its

integrity” [5].

This paper briefly analyses some of the Android forensic

and anti-forensic techniques reported in the literature. The

rest of the paper is organized as follows. Section 2 briefly

describes Android operating system, certain security issues

and discusses the features common to all devices that are

fundamental to forensic investigation. A survey of forensic

solutions reported in the literature and anti-forensic

techniques is given in sections 3 and 4, respectively and

section 5 concludes.

2. ANDROID OPERATING SYSTEM

Android, a mobile operating system developed by Google,

is the best-seller for tablets since year 2013, and on

smartphones it is dominant by any metric [6]. The

middleware, libraries and APIs written in C and software

running on an application framework which includes Java-

compatible libraries reside on top of the Linux kernel (see

Image 1).

Image 1: Android software stack

Linux kernel is developed independently of other

Android's source code and provides the support for some

fundamental functions, such as device drivers, network

infrastructure and power management [7, 8]. Libraries and

Android runtime reside in the next level of the architecture.

Libraries provide the infrastructure for applications to run

properly, such as binaries and graphics support. Android’s

runtime consists of the Dalvik Virtual Machine (DVM) and

the core libraries that provide the available functionality for

the applications [7]. Its main purpose is the creation of a

stable and secure environment in which applications are

executed: each application runs in its own sandbox and

therefore is not affected by other applications or system

functions. A satisfying level of security is preserved by

allowing certain resources to be used only if permitted by

special privileges. The rest of the architecture consists of

the applications framework and the applications layer that

manage general application structure, such as containers,

alerts and the applications themselves. As Android runtime

libraries are written in Java, DVM translates Java to a

language that the OS can perceive [9] – until version 5.0,

Android used Dalvik as a process virtual machine with

trace-based just-in-time compilation to run Dalvik

executable code, which is usually translated from the Java

bytecode. Following the trace-based just-in-time principle,

in addition to interpreting the majority of application code,

Dalvik performs the compilation and native execution of

select frequently executed code segments each time an

application is launched [10, 11].

Due to the small chip size, non-volatile nature and energy

efficiency, NAND flash memory was selected to serve as

Android storage [12]. Yet Another Flash File System 2

(YAFFS2) was the first filesystem implemented on devices

running Android, but, due to certain limitations (such as

large file coverage) [13], was replaced with Ext4 before the

release of Android version 2.3 (Gingerbread). The Ext4

filesystem, apart from successfully coping with the weak

points of YAFFS2, is enhanced with the journaling event

function which provides recovery options and facilitates

acquisition of unallocated files [13, 14]. As NAND flash

memory was incompatible to the Linux kernel, a new

technique was implemented to provide the ability to access

the flash memory areas [8]. The Memory Technology

Devices (MTD) system was one of the facilities serving as

an intermediary between the kernel and the file system and

is present in many Android devices. Handsets that do not

support the MTD system usually utilize the plain Flash

Transaction Layer (FTL) that enables communication

between the two parts [14]. The flash storage on is split into

several partitions: operating system resides on /system

while /data is used to store user data and application

installations. As root access is not gained to users /system

and sensitive partitions are mounted read-only, unless

device is rooted by exploiting security flaws.

Security and privacy issues of Android devices can be

classified either as issues arising from surveillance by

public institutions, such as NSA (see [15, 16] for more

details), common security threats, such as malware that

sends text messages from infected phones to premium-rate

telephone numbers without the consent or even knowledge

of the user [17] or technical security features, typically

resulting from unnecessary permissions required to install

applications. As stated before, applications run in a

sandbox, unless access permissions are explicitly granted

by the user when the application is installed. This reduces

the impact of vulnerabilities and bugs in applications, but

the unnecessary required permissions that result from

either developer confusion or lack of documentation work

against effectiveness of sandboxing. Although since the

version 6.0, users are allowed to block applications from

having access to the contacts, calendar, phone, sensors,

SMS, location, microphone and camera [18], full

permission control is only possible if device is rooted.

So which features are common to any Android device and

can they be used in the forensic investigation? According

to Andrew Hoog [2], Android was engineered from the

beginning to be online, whether using cellular or wireless

networks. Being online is a prerequisite that allows the

execution of another fundamental feature: downloading

and installing applications from the Play Store. To a user,

this feature presents the ability to extend the functionality

of the device. To a forensic investigator, applications

downloaded from the Store present a rich source of

information. Finally, the ability for users to store their data

on the devices is important as much to a forensic

investigator as it is important to a user himself. Typically,

stored data is the basis behind any forensic investigation.

3. ANDROID FORENSICS: A BRIEF SURVEY

Procedure for handling Android devices contains several

steps, such as securing the device, isolating it from the

network, circumventing the pass code and imaging mass

storage devices. Depending on the way how data is

accessed, android forensic techniques can be classified

either as logical or physical. Logical technique extracts

allocated data, typically by accessing the filesystem, with

the exception of SQLite database (that might still contain

deleted records in the database). Physical techniques, on

the other hand, extract data from the physical storage

medium directly and do not rely on the filesystem. There

are advantages to this approach and the most significant is

that with the physical forensic techniques it is possible to

recover both the allocated and the unallocated (deleted or

obsolete) data. One of the guiding principles of any

forensic investigation is to avoid modification of the target

device in any manner, and this principle works for Android

devices also. The rest of this section will provide a review

of the forensic techniques, solutions and methods reported

in the recently published literature of interest.

Lai et al. [19] implemented a live-forensic acquisition

procedure, based on commercial forensic suites through

cloud computing, designed for Android devices. Although

acquisition type was not specified, the procedure

resembled to logical acquisition that can be applied to

rooted devices as well. Since proper time-stamping is an

essential for the validity and integrity of forensic evidence,

actual date correction is another interesting feature in their

approach.

Simao et al. [9] proposed a forensic acquisition framework

for the Android in the form of flowchart, applicable to

many scenarios, including damaged devices and

fragmented memory page analysis. In order to validate the

model, authors have conducted experiments on devices

with different conditions and figured out that the proposed

scheme was applicable. Downside of their solution is lack

of some crucial elements necessary for real-time

investigation.

Research of Vidas et al. [8] deals with the forensic

acquisition on devices protected by a screen lock. Since a

brute-force attack on the device could lead to a further

block, and possibly to inevitable data modification, another

technique had to be implemented. To resolve the problem,

authors have stated that booting with a recovery image

could easily bypass any kind of active lock code. Recovery

mode boot file residing in the Android root was significant

for the acquisition process of the recovery image, as by

booting into recovery mode, the boot process is

circumvented with the boot target set to boot image

currently loaded in the recovery partition. Boot image that

authors have used consists of existing modified files and

variety of transfer daemons and binaries. The authors have

noticed that boot options differ between brands of mobile

phones and have examined several different case studies.

Downside of aforementioned research is the lack of

statistic results of data retrieval.

Sylve et al. [20] referred to a lack of studies applicable to

physical acquisition and highlighted the importance of this

issue. The researchers presented “a methodology for

acquiring complete memory captures from Android, code

to analyse kernel data structures and scripts that allow

analysis of a number of user and filesystem based

activities”. Authors have also enumerated the existing

methodologies on volatile memory analysis for Linux and

Android operating systems and compared the capabilities

of the corresponding tools. The results of their experiments

provided a proof that Linux oriented forensic techniques

were not compatible to the Android.

Andriotis et al. [21] implemented a forensic acquisition

method that employs WiFi and Bluetooth. The most

significant parts of their research was the fact that devices

used were involved in actual crime scenes. Afterward, they

presented a detailed step-by-step procedure to complete

logical acquisition, which was common for all the devices

participating in the experiment, which was considered a

success as any critical evidence was recovered in every

networking attribute.

Ext4 filesystem that became the successor of YAFFS was

examined by Kim et al. [13]. Authors have used two rooted

devices running Android and their research was limited to

logical acquisition. Detailed description of the file system

was provided and forensic acquisition for the journal log

area was summarized.

Mylonas et al. [22] studied the involvement of context-

measuring devices, such as accelerometers and GPS, in

mobile forensics. Authors have stated that this kind of data

can be of great importance and that a special approach is

required because of the volatile nature of the data itself.

Methodology on data acquisition from sensors was

proposed, ranging from theory to practical procedures

executed at the laboratory level. Data acquisition system

they have developed took into consideration security

mechanisms on the target devices as well as the procedures

to bypass these mechanisms. As the system they have

developed consists of two parts (the workstation and the

mobile agent), and as one of the possible use of the solution

would be to acquire data from a phone belonging to a

potential suspect, agent installation had to be forced and

functionality to be obfuscated either via social engineering

or fake error messages. According to their research, 12 out

of 15 sensors need absolutely no permission to gain access

to, leading to conclusion that security behind sensors is

easy to bypass: agent is triggered each time the user

accesses a sensor, acquires the data, encrypts it and sends

it to a workstation if the device is connected to a network.

Live forensic methods as a means for surveillance of

malware activity on Android is presented in work of Guido

et al. [23]. The solution was developed as a mainstream

Android application in order to avoid rooting. It comprised

of five modules programmed in Python, each detecting

changes in specific parts of the operating system:

bootloader, recovery, filesystem, deleted files and APKs.

Experiments consisted of three rounds of malware

injections on target mobile devices, with many successful

detections, but weak points, such as false positives and

inability to detect some deleted entries have occurred also.

Despite the defects, the solution proposed in the paper was

one of the important contributions to the Android forensics.

Similarly, Justin Grover [24] has developed DroidWatch

application that performs continuous tracking of events and

data flow on an Android device and sends the information

to a Web Server. As rooting of the device was avoided due

to authors policy, the range of acquired data was limited.

The data process flow within the DroidWatch app is

depicted in Image 2. Data collection and storage is a

continuous process, with transfers scheduled by

configurable variable. Upon a successful transfer to the

enterprise server, events dated prior to the transfer are

wiped from the local phone database. File transfer attempts

that fail are logged in the database and do not result in the

wiping of any events.

Image 2: DroidWatch data process flow diagram [24]

Son et al. [25] conducted an evaluation on the Recovery

Mode method with seven rooted Samsung devices taking

part as a sample. The results from the use of JTAG method

served as a comparison vector to the Recovery Mode. A

section was dedicated on the acceptable practices during

the data acquisition phase in Recovery Mode. A flowchart

related to the steps taken during the acquisition procedure

was introduced, the importance of using the appropriate

bootloader for each device was pointed to and issues with

encrypted ones were mentioned. Actions that should have

been taken into consideration during the restoration

process have been highlighted, for example the prohibition

of interaction with the menu elements in Recovery Mode

and the USB cable separation from the device before

battery removal. Additionally, custom software was

developed in order to conduct the data extraction tasks and

check the integrity of the method. Finally, the hash values

of the data partition that were extracted in both cases was

calculated and proved to be equal, assuming that integrity

was preserved.

Muller and Spreitzenbarth have investigated innovative

techniques in an effort to assess how much valuable

information can be extracted from encrypted Android

phones [26]. A cold boot attack was performed by freezing

to gain the device in order physical access to the device

memory and acquire information such as encryption keys

or personal data. The method, however, has an important

limitation: the user partition gets wiped out when the

device bootloader unlocks. Still, it is the first work to

perform a successful and effective cold boot attack on

Android phones and the implementation of cryptographic

solutions does not appears as a problem that cannot be

bypassed.

Konstantia Barmpatsalou et al. provided a comprehensive

review of forensic techniques applicable to other

smartphone operating systems [14].

4. ANDROID ANTI-FORENSIC TECHNIQUES

As stated before, the purpose of anti-forensics is to

compromise the availability or usefulness of forensic

evidence. Distefano et al. distinguished several kinds of

anti-forensics [27]: destroying evidence (making it

unusable during the investigation), hiding evidence

(subverting an analyst by decreasing the visibility of the

evidence), eliminating sources (neutralization of the

evidentiary sources) and counterfeiting evidence (creation

of a fake version of the evidence which is properly made to

carry wrong or deviated information in order to divert the

forensic process).

Kessler [28] categorises anti-forensics into four groups:

data hiding, artefact wiping, trail obfuscation, and attacks

against forensics processes or tools, which refer to attacks

that force the forensic analyst to perform non-standard

procedures or call into question the data recovered. For

computer anti-forensics, data hiding contains things like

steganography, deleted files, and storing data in the cloud

or in other storage space. On a non-rooted phone,

information can be hidden by having an application store it

somewhere secluded and restore it at a later time. This

approach also allows quick mass-deletion [27]. Artefact

wiping refers to overwriting data down to the level where

it is impossible to restore it from, even with high-tech un-

deletion techniques. Two weaknesses with this class

however may be noticed: they may miss some data, and

they may leave traces of the wiping that have occurred

(probably the wiping tool itself will remain). Since

Android anti-forensics is mainly concerned with data

legitimately stored and usable on the phone, and not with

attacks or traces on other devices on the network, trail

obfuscation is not considered to be very relevant anti-

forensic technique. Trail obfuscation typically refers to

network forensics. When an attacker does not need a reply,

he can spoof the sender’s address to make tracing the attack

to its source harder. It is also possible to use spoofed sender

addresses for attack amplification, by tricking third parties

into sending much more traffic to a victim than the attacker

could on their own. Other tools in this category, such as

onion routers, Web proxies and e-mail anonymisers, hide

the real sender of traffic behind a server which serves many

clients. Trail obfuscation also includes log file and

timestamp alteration.

5. CONCLUSION

Variety of conducted research on Android, and in general,

mobile forensics, as well as undergoing standardization

attempts indicate that the area is under continuous

development. The work presented in this paper provided a

comprehensive review of the state-of-the-art research in

the field of Android forensics, as well as a classification of

important Android anti-forensic techniques. Any relevant

current work, be it a research or review, can be used as a

reference to anyone interested in better understanding the

facts of this rapidly evolving and interesting research

discipline.

REFERENCES

[1] Gartner Inc., “Gartner Says Worldwide Smartphone

Sales Grew 3.9 Percent in First Quarter of 2016”, Egham,

UK, May 19, 2016.

[2] A. Hoog, “Android forensics: investigation, analysis

and mobile security for Google Android”, Elsevier, 2011.

[3] J. Lessard, G. Kessler, “Android Forensics: Simplifying

Cell Phone Examinations”, Small Scale Digital Device

Forensics Journal, 4(1), pp. 1-12, 2010.

[4] P. Albano, A. Castiglione, G. Cattaneo, A. De Santis,

“A Novel Anti-Forensics Technique for the Android OS”,

2011 International Conference on Broadband and Wireless

Computing, Communication and Applications, pp. 380-

385, 2011, IEEE.

[5] R. Harris, “Arriving at an anti-forensics consensus:

Examining how to define and control the anti-forensics

problem”. Digital Investigation 35, pp. S44-S49, 2006.

[6] F. Manjoo, “A Murky Road Ahead for Android,

Despite Market Dominance”, the New York Times, May

27, 2015, ISSN 0362-4331.

[7] I. I. Yates, “Practical investigations of digital forensics

tools for mobile devices. In 2010 Information Security

Curriculum Development Conference, October 2010, pp.

156-162, ACM.

[8] T. Vidas, C. Zhang, N. Christin, N., “Toward a general

collection methodology for Android devices”, Digital

investigation 8, pp. S14-S24, 2011.

[9] A. Simao A, F. Sicoli, L. Melo. F Deus, JR Sousa,

“Acquisition and analysis of digital evidence in android

smartphones”, International Journal of Forensic Computer

Science, Vol. 6, No. 1, pp. 28–43, 2011.

[10] B. Cheng, B. Buzbee, “A JIT Compiler for Android's

Dalvik VM” (PDF), android-app-developer.co.uk, Google,

pp. 5–14, May 2010.

[11] H. Q. Raja, “Android Partitions Explained: boot,

system, recovery, data, cache & misc”, Addictivetips.com.,

May 19, 2011.

[12] C. Zimmermann, M. Spreitzenbarth, S. Schmitt, FC.

Freiling, “Forensic analysis of yaffs2”, In Sicherheit, pp.

59–69, 2012.

[13] D. Kim, J. Park, K-g Lee, S. Lee S, “Forensic analysis

of android phone using ext4 file system journal log”, in

Future Information Technology, Application, and Service,

Springer Netherlands, pp. 435-446, 2012.

[14] K. Barmpatsalou, D. Damopoulos, G. Kambourakis,

V. Katos, “A critical review of 7 years of Mobile Device

Forensics”, Digital Investigation, 10(4), pp. 323-349,

2013.

[15] Staff, “Privacy Scandal: NSA Can Spy on Smart

Phone Data”, September 7, 2013.

[16] James Ball, “Angry Birds and 'leaky' phone apps

targeted by NSA and GCHQ for user data”,

theguardian.com, Jaunary 27, 2014.

[17] E. Protalinski, “Android malware numbers explode to

25,000 in June 2012”. ZDNet, July 17, 2012.

[18] R. Amadeo, “Android 6.0 Marshmallow, thoroughly

reviewed”, Ars Technica, May 10, 2015.

[19] Y. Lai, C. Yang, C. Lin, T. Ahn, “Design and

implementation of mobile forensic tool for android smart

phone through cloud computing”. In International

Conference on Hybrid Information Technology, pp. 196-

203. Springer Berlin Heidelberg, 2011.

[20] J. Sylve, A. Case, L. Marziale, GG. Richard,

“Acquisition and analysis of volatile memory from android

devices”. Digital Investigation 8, No. 3, pp. 175-184,

2012.

[21] P. Andriotis, G. Oikonomou, T. Tryfonas, “Forensic

analysis of wireless networking evidence of android

smartphones”, In 2012 IEEE International Workshop on

Information Forensics and Security (WIFS), pp. 109-114.

IEEE, 2012.

[22] A. Mylonas, V. Meletiadis, L. Mitrou, D. Gritzalis,

“Smartphone sensor data as digital evidence”, Computers

& Security 38, pp. 51-75, October 2013.

[23] M. Guid, J. Ondricek, J. Grover, D. Wilburn, T.

Nguyen, A. Hunt, “Automated identification of installed

malicious android applications”, Digital Investigation 10,

pp. S96-S104, 2013.

[24] J. Grover, “Android forensics: automated data

collection and reporting from a mobile device”, Digital

Investigation 10, pp. S12-S20, 2013.

[25] N. Son, Y. Lee, D. Kim, J.I, James, S. Lee, K. Lee, “A

study of user data integrity during acquisition of android

devices”, Digital Investigation 10, pp. S3-S11, 2013.

[26] T. Muller, M., Spreitzenbarth, “Frost”, In: Jacobson

M, Locasto M, Mohassel P, Safavi-Naini R, editors.,

Applied cryptography and network security, Lecture notes

in computer science, vol. 7954. Berlin, Heidelberg:

Springer, pp. 373–88, 2013.

[27] A. Distefano, G. Mea, F. Pace, “Android anti-

forensics through a local paradigm”, Digital Investigation

7, pp. S83-S94, 2010.

[28] G. Kessler, “Anti-forensics and the digital

investigator”, In Proceedings of the 5th Australian digital

forensics conference, December 2007.

